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Abstract. We examine some aspects of the interface area between mathematical statistics and
statistical physics relevant to the study of Boltzmann machines. The Boltzmann machine learning
algorithm is based on a variational principle (Gibbs’ lemma for relative entropy). This fact
suggests the possibility of a scheme of successive approximations: here we consider successive
approximations parametrized by the order of many-body interactions among individual units. We
prove bounds on the gain in relative entropy in the crucial step of adding, and estimating by Hebb’s
rule, a new parameter. We address the problem of providing, on the basis of local observations,
upper and lower bounds on the entropy. While upper bounds are easily obtained by subadditivity,
lower bounds involve localization of Hirschman bounds on a dual quantum system.

1. Introduction

We consider the Boltzmann machine model in a rather more general setting than in Ackley
et al (1985), allowing, as in Azencott (1992), for direct interaction between more than two

neurons. We establish, first of all, our notation. For fixed integere setA, = {1, 2, ..., v}.
Points inA,, will be called sites, or nodes, or neurons. Having$et {—1, 1}, we indicate
an element of” by o = (01,02,...0,),0; € S,i =1,2,...,v. A probability measure on

S is determined by a density functign o € S¥ — p(o) satisfyingp(o) > 0,Vo € S¥ and
desv p(a) =1.
We associate, with each sub3étof A,, a subset variable,, defined by
oy = H o; if M is nonempty, 1 otherwise.
ieM
Any probability densityp on S can be written in the form

1
plo) = o M%y SMOM
wheresy = E,(oy), andE,(-) indicates expectation with respect to the probability density
p. The set{sy, M # @} of moments determines a coordinate system (tiohart) on the
(2" — 1)-dimensional manifold® M (S") of all probability measures o§". If we restrict our
attention to the seP M, (S") of strictly positive probability measures &ti, we can also write

eXp(ZMgAV,M;é(A Omom)

Z9) where Z(9) = Z exp( Z OMUM).

g€, MCA, . M#)

plo) =

In the above sense, the collection of coupling constghis M # @} equipsP M.(S") with
another coordinate system (thechart). The simple and deep relations betweensthend
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0-charts have been reviewed and applied to problems in machine learning by énari
(1992).

The conventional Boltzmann machine has only two-body couplifigs O for |[M| > 2)
and must allow for hidden nodes in order to compensate for this limitation. We wish to explore
here the advantage of remaining in the exponential family of probability distributions by
allowing for many-body couplings, without hidden nodes.

The variational basis of the Boltzmann machine learning algorithm (Ackey} 1985)
is in the following elementary considerations. Lgtand p; be two elements oP M, (S");
Jensen’s inequality shows that

E(In po) = E,(In p1) with equality holding iff 09 = p1. (1.1)

Call6(i), s(i) the coordinates gf; (i = 0, 1) in the two charts considered above. ltis trivial
to compute that, for each nonempty subtet A,, we have

AE 5, (In p1) _ B
W(l) = (su(0) — s (D). (1.2)
Therefore, fore > 0, setting
AOy (1) = e(sy(0) — sy (1)) (1.3)
we have
0 E (I p1)
———— A0y (D) > 0. 1.4
e 265 (D) m (1) (1.4)

Inequality (1.4) says that a ‘small’ updatingy, (1) — 6,,(1) + A6y (1), of the coupling
parameters op; produces a new probability measure which is closesgtin the sense that
E,,(In p1) gets closer to the upper bound that Jensen’s inequality sets for it.

The (higher-order) Boltzmann machine learning algorithm can now be described by the
following steps:

o with the current values of the machine parametérg1)}, a simulator is allowed to run
according to a Glauber dynamics (Glauber 1963) hayings its stationary distribution;
this simulation is supposed to last long enough to allow the estimation, as ergodic means,
of some of the moments, (1);

o these moments are compared with the corresponding momg(@s estimated from the
environmental signal consisting of a random sample drawn from the popufation

o the parameters of the simulator are updated according to (1.3);

o the above procedure restarts with the new parameters.

Inequality (1.4) suggests that repeated execution of this cycle make®ser to oo,
hopefully leading to a finab; ‘indistinguishable’ frompg. In this sense the simulator will
have built a model of the environment.

This paper makes some preliminary steps towards an operationally meaningful assessment
of the performance of the above procedure. We observe, in this respect, that, in terms of the
relative entropy

g
I(po. p1) = Epy(In po) — Epo(In p1) = Y poe) In pol(@) (1.5)
& pi(a)
the inequalityE ,, (In po) > E,,(In p1) amounts to a statement of Gibbs’ lemma:
I(pg, p1) =0 equality holding iff pg = p1. (1.6)

As it is, in general, out of the question to obtain identity between model and environment
(namely! (po, p1) = 0), the performance of the learning procedure will be measured by its



Higher-order Boltzmann machines and entropy bounds 5531

capability of achieving a relative entropy below a preassigned positive threshgl®uch a
threshold will be determined, in each actual application, according to the standard techniques
of the theory of hypotheses testing: in particular, inequality 3.1 (page 75) of Kullback (1959)
shows the crucial role of (pg, p1) in relating the sample size to the errors of the first and
second kind in a test of the hypothegisversus the alternative hypothegis

In the above setting, the problem of finding a ‘good’ mogdelof the environmental
distributionpg becomes the problem of singling out a class of parametric models within which
an element can be found having, with referencepgprelative entropy smaller thafin.
Reasons of computational feasibility make it obvious that such a parametric class must have
less than the maximum number-21 of parameters. Having fixed a subdedfthe set 2+ — {7}
of all nonempty subsets df,, we consider those models for which the coupling constapats
vanish forM ¢ A. An elementary explicit computation shows that, for a probability density
of the form:

exp(ZMeA GM(’M)
palo) = 70 (1.7)
we have
I(po, pa) = H(pa) = H(po) + Y Om(E,,(om) = Epy(om)) (1.8)
MeA

where {6y, M € A} are thosed-coordinates ofo4, which have not been set to zero, and
H(p) =—) s p(0)Inp(0) is the entropy op € PM.(S").

The following considerations formalize the variational choice of the element of the given
class of models that ‘best approximates’ a giygn

e For each choice of the s¢t)(0) = E, (o), M € A} of ‘environmental moments’
associated to subsetsAn there exists a unique choice of coupling constéiyis M € A}
in (1.7) such that equation

E,, (oy) = sy(0) VN € A (1.9)

is satisfied (lemma A 4.6 of Lanford 1973).

e For fixed pp, we shall indicate by, o the corresponding solution of the form (1.7) of
equation (1.9). We shall refer {0, ¢ as to the ‘approximation of ordet’ to po, or the
‘Boltzmann machine of ordes’ associated tgy.

e It is easy to check, from (1.2), that, o minimizes(pg, p) under the constraint that
6y = 0 for every nonemptw not belonging toA.

e Equation (1.8) shows that

1(po, pa,0) = H(pa,o) — H(po). (1.10)

e It is easy to check, from (1.10), that, o maximizesH (p) under the constraint that
E,(on) = Epy(on), VN € A.

Thus, how close the Boltzmann machine of orderis, in relative entropy, to the
environmental distribution depends only on the environmental entffy) and on the
maximum entropy compatible with the given environmental expectations of subset variables
for subsets iM. It will be notationally convenient, from now on, to drop the suffix ‘0’ when
referring to the assigned environmental distribution (which we shall, therefore, simply indicate
by p) and to the associated Boltzmann machine of ordéwhich will be indicated byp,).

As a final remark of this section, we observe that a training sam@e ¢ (2), ..., o (n)
of fixed size does not provide knowledge of the actual environmentab{aw, but only of its
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empirical estimate*(c; o (1),0(2),...,a(n)), which is itself a random variable, function
of the sample. A detailed study of the random variabig*, p4) in its comparison with
I(p, pa), leading under suitable hypotheses to the Akaike (1974) information criterion, can be
found in Murataet al (1995). In the following, we shall, however, neglect all considerations
of estimation errors in the numerical values of the parametepg .of

The paper is organized as follows. In section 2 we prove upper and lower bounds on the
relative entropy decrement achieved through the introduction of one more parameter in the
model. In section 3 we study ‘realistic’ entropy bounds, namely entropy inequalities in which
only quantities which are known at the current level of approximation appear. In particular we
specialize ‘quantum’ entropic inequalities to our models. Section 4 is devoted to discussion
and open problems.

2. Reconfiguration of a Boltzmann machine

Having fixed the environmental distributign having fixed the ordeA, it may occur that the
Boltzmann machine of ordet (which will be indicated by, its coordinates being indicated

by s(A) or 8(A)) fails to give a value below the thresholg, set according to the criteria
discussed in the previous section. Such a situation opens the problem of choosing (at least) a
new subseM ¢ A and, on the basis of the value Bf, (o)) estimated from the environmental
distribution, constructing the Boltzmann machine of ore= A U {M} (which will be, of

course, callegp, its coordinates being indicated byB) or 6(B)).

This section is devoted to upper and lower bounds on the decrement of relative entropy
achieved through this crucial step of ‘adding one more parameter to the model’ (and through
its iterations). Equality (1.10) and the observation thats the approximation of ordet to
pg, make it clear that such a decrement is measuret{py, p4), and that

1(p, pg) = I(p, pa) — (0B, PA). (2.1)
A lower bound onl (pg, p4) is easily obtained through the following steps.

¢ Relative entropy is monotonically increasing with respect to refinements of the partition
in sample space. In particular, for every evént S', we have (Kullback 1959):
Pp(C - Pp(C
5(C) + Pp(@)In 5(C)

Pr(O) —
5N © PA(C)

< 1(pg, pa) (2.2)

where we have set
PA(C)=) pale)  Ps(C)=)_ ps(o).

oeC oeC

e Choose, in particular, faf the eventé,, = 1’, whose indicator function ig- (o) = ’*gM,
so thatPz(C) = M = 1*% wheresy, is the environmental expectation of the subset
variableoy,, and P, (C) = w. (Notice that, in general, it will bey, (A) # sy,
becauseM & A).

e Use Schuetzenberger's (1954) inequality, namely

Po'n?‘*%'n??z@o—m)z for pie(01), g=1—p. (=01
1 1

(2.3)
to conclude that
(s (A) — sm(B))?
2
(we remark that this inequality still holds if we exchangevith B).

I(pg, pa) = (2.4)
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In order to obtain an upper bound, we observe that the same reasoning as in (1.8) leads,
for every choice ofo’ andp” in PM.(S"), with, respectively, coordinatas, 6’ ands”6”, to
the identity
L' p")+1(p". p)) =D (O — O (sh — sk) (2.5)
NCA,
which specializes, in our case, to

I(pB, pa) + 1(pa, p) = O (B)(sy — sy (A)). (2.6)
We can, therefore, conclude that
I(pB, pa) = Ou(B)(sy — su(A)) — I(pa, pB)
< Ou(B)(sy — sm(A) — 5(sm — sm(A))%. 2.7)
Summarizing, forB = A U {M}, we have

1 1
>(om — su(A)? < 1(pg, pa) < > Gom — sM<A)>2< (2.8)

We make the following comments.

(1) Inequality (2.8) is ‘epistemologically realistic’, in that it estimates the decrement in
relative entropy from below in terms of moments which can be estimated from an environmental
sample and of the moments predicted by the model atuhentorder of approximation, and
from above in terms of the same quantities and of the additional parameter of an attempted
subsequerievel of approximation.

(2) Inequality (2.8) implies, in particular, that, f& = A U {M} with M ¢ A,

By (2.9)
sm — smu(A)
This inequality amounts to a quantitative assessment of Hebb'’s (1949) rule in that it gives a
bound on the increment that one has to give to the coupling constant associated to th&subset
in order to bring the ‘consensus’ of the neuronddr(probability thats,, = 1) from the value
) predicted by the model,, to the value™48) = Lu exhibited by the environment.
(3) Inequality (2.9) can be extended, by iteration, to the general case that new coupling
constants are introduced for successively new sulidetd/, ..., M;. Itis convenient, in

thiscase,tose®l = AU {My, Mo, ..., M}, A; = A, U{M;}forl<i <k, Ag=A. As

201 (B) 1)

s —su(A)

k
I(pg, pa) = Z I(pa, pa,_1) (2.10)
i=1
one can conclude that

1 k
5 D (su,(B) = su,(Ai-0))? < 1 (5, pa)
i=1

(2.11)

Ly 20, (A;
< E;(SM,(B)—SMI,(AZ._DF( e (A) 1)

sy, (B) — sy, (A1)
(4) If somea priori upper boundl (p, pa) < h on the relative entropy (p, pa) =

H(p4) — H(p) is available, inequality (2.11) can give, along a nested sequence of successive

approximationsA = Ag € A; C,...,C A, C ..., a criterion for stopping the

computationally expensive procedure of adding and estimating new parameters; kapwing

such a criterion will be of the form:

stop at the level at which it is, for the first timef — 3 Z(SMf(B) — sp1,(Ai_1))? < Iin.
i=1



5534 B Apolloni et al
3. Entropy bounds

In order to be realistic, a stopping rule of the form outlined at the end of section 2 requires
that the upper bound be of the formh = h({sy; N € A}), namely a function only of the
experimental datgsy; N € A} on the basis of which the approximatipp of orderA to the
environmento has been constructed. As, in turn, itl/i€, p4) = H(pa) — H(p), the above

goal is achieved (witth = h, — hq) once ‘localized’ inequalities of the form

hi({E,(on): N € A}) < H(p) < h2a({E,(on); N € A}) 3.1

are established, for generice PM.(S"), and hence also fqs,.

The task of obtaining anpperbound of the above form is conceptually simple, being
solved by the same idea underlying subadditivitytfneglect dependence among subsets in
A, and avoid overcounting of overlapping subsets.

For instance, in the case = {N C A,:0 < |N| < k}, in which all interactions of up to
k neurons are considered in the model, Han’s inequality (Han 1978, Dembo and Cover 1991)
gives

H(p) < 1 H(pn)

v V'\ NcA, N =k k
k

wherepy (o) = 3,114y (o) is the marginal distribution of the variables localizedVn
As py(o) = ﬁ >_wcn Smou, the right-hand side of (3.2) is, as needed, a function only of
{sy; N € A}. An additional bonus of Han’s inequality is that the r.h.s. is a monotonically
decreasing function df.

We concentrate, in the rest of this section, on the task of finding locdtiwesr bounds
on H (p). The idea thati (p) fails to equal the upper boundn 2 by an amount which exactly
measures how fap is from the centre of the simpleR M. (S") (independent, identically
distributedo, with P(o; = 1) = %) can be made precise through the form that Gross’ (1975)
inequality takes in our context:

H(p) > vIn2—Z<1— Y Vp(oi=1.)p(..0; = —1...)). (3.3)
i=1

oesv

(3.2)

Shifting attention from individual sites to subsets requires us to follow the intuition that, if
¥ = pY? is ‘spread’ on its domairs”, then its Fourier transform (namely the set of the
coefficients of its expansion in terms of characters of the gfeup 1}*), defined as

N 1
Y (M) = 2 ; p(@) 2oy (3.4)

is concentrated on a small region of its domafi.2
These considerations are made precise by the following discrete form of Hirschman'’s
uncertainty principle (Hirschman 1957, Dembo and Cover 1991):

H(pg)"’H(I"g) 2 vin2 (35)
where the suffiX refers to the parameters in

_ (€XP_prcn,:m0 OMOM)
Po = Z©0)

and

H(rg) == Y ro(M)In(ry(M)) (3.6)

MCA,
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ro(M) = (Y (M))? (3.7)

A 1

PoM) = 55 > po@)ou. (3.8)
oesy

Ouir first aim is to rewrite (3.5) in a form in which, insteadmfr,), a function of the moments
su(0) = E,, (om) appears. We recall, first of all, that fér> 0

d
351 (Pp0) = =B ) OnCOVyps (0w, o)y <O (3.9)
ﬂ MCA,
NCA,

so thatH (pg) > H(p2).
We can, therefore, write

H(pg) + H(rze) > H(p2g) + H(rze) > vin2. (3.10)
Now
~ _ 1 172 _ 1 EXPZNQA‘_N#J Onon
Voo (M) = ﬁ(; P20 (@) o = 2v/2 ; 7(20)12 oM
1 VAC))

- ov/2 Z(20)1/2 XS: po(@)oy = Cy(0)sm(0). (3.11)
ogesy
The quantityC, (¢) (constant w.r.tM) is easily computed from the observation that, because
of Parseval's identity, it mustbe ",/ \ (Y29 (M))? = Cy(0)* Y e n, Sm(0)2.
Itis, therefore,

su(0)?
M= ————— 3.12
720( ) ZNgAv SN(G)Z ( )
and we can conclude, dropping from now on the suffikethat
H(p) >vIn2— H(r) (3.13)
with
vy = < (3.14)
r = :
ZNgA,, 51%/
H(r)=— Y r(M)In((M)) (3.15)
MCA,

wheresy, = E,(oy) for M # 0, sy = 1.

Inequality (3.13) translates the problem of finding lower bounds of the férmn) >
hi({E,(on); N € A}) into the problem of finding upper bounds of the forF(r) <
hs({E,(on): N € A}).

This problem can be easily solved by looking at the functias a probability density on
the subsets of\,: from the knowledge obnly the moment§E,(on); N € A} one cannot,
of course, calculate the probabilities in (3.14) (the denominator and some of the numerators
in (3.14) being, in this case, unknown), but azen compute the conditional densities with
respect to the evemt U {¢}, defined by

2
r(M|AU (@) = S—Mz if M € AorM =@, 0 otherwise
2 NeAun SN
H (r) can, therefore, be bounded from above by the supremutiiofast varies in the set of
all probability densities on“2 which, under conditioning with respect to the event {7},

givet(M|A U {B}) = r(M|A U {#}), VM € 20,
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This supremum is, in fact, attained (as it is fairly intuitive to guess, and easy to prove by
conventional Lagrange multiplier methods) by a densitgorresponding to a total probability
massx distributed among the elements4fJ {#} proportionally tor (-] A U {#}), and to a total
probability massp = 1 — «, uniformly distributed on the remaining subsets\of

The result is easily expressed in terms of the entropy

ha=H(r(|AU{D)) = — Z r(MIA UA{Z}) In(r(M|A U{2}))
MCAUD)
of the conditional density, a function only @fy;; M € A}:
el

o= —. (3.16)
|A| — 1 +eha

This leads to the inequality
H(r) < Ht*) =ahp+BIn|A| —alna —BIng (3.17)
whereA is the complement of.

As a concluding remark, we wish to summarize the strategy outlined above, in order to
provide an intuitive understanding of the approach that we propose.

H (p) is theunknownentropy of the source that has generated the training sample. At
the current level of approximation, we suppose that the momgmig M € A} have been
estimated with negligible sampling error, and that equation (1.9) has been solved with respect
to the coupling constant®,,; M € A}. The issue is: i (p, p4) smaller than the threshold
Imin?

Inmin is determined here by the requirement that a sample of the size that will be drawn
from the simulator in the actual application have a preassigned, large, probability of being
classified as coming from the environment. Han'’s inequality sets an upper boutideamn
of the formH (p4) < ho({sy; M € A}) = hy(A) whose right-hand side can be computed at
the current level of approximation. Hirschman'’s inequality sets a lower bouifl(ph of the
form: H(p) > vIn2—ahs+BIN|A| —alna — BIn B = h1(A) whose right-hand side can
also be computed at the current level of approximation.

The qualitative meaning of this inequality is the following: having explored a large enough
A and having found there many momenjgof absolute value ‘small’ with respecttg = 1,
so that the conditional probability densityM |A U {@}) is far from uniform and thereforie,
is ‘'small’, one can draw the conclusion thd{p) is ‘large’. As

I(p, pa) = H(pa) — H(p) < h2(A) — ha(A)
if ho(A) — hi(A) < Inin One can draw the conclusion that the required accuracy has been
attained with the current set of parameters.
If, onthe contraryh,(A) —hi(A) > Imin it may be necessary to enlargéy a new subset
M. Having estimated,, , inequality (2.4) says thatsu;u,; Will be, in relative entropy, by at
least an amounsf“l_sgil“‘))z, closer tharpy4 to p.
Even before solving the method of moments equations
PE, sy (ON) = SN VN € AU {My}
inequality (2.9) says thaty, will go from the value O it currently has ip,4 to a new value
Oum, (A U M,) satisfying
0M1(A U My) > 1.
suy — s, (A)
The initial point given by the parametersmf, supplemented by, — sy, (A) as initial guess
for 0, suggests itself as natural in an iterative search of the solution of the method of moments
equations.
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4. Discussion and open problems

We observe that the parameter updating (by gradient descent) of a Boltzmann machine,
reviewed in the introduction, proceeds in a way strongly reminiscent of Hebb’s (1949)
neurophysiological postulate: ‘When an axon of eells near enough to excite a cétland
repeatedly and persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells, such thatefficiency as one of the cells firing is enhanced’.

In this suggestive language, our considerations of section 2, in particular inequality (2.8), can
be read as a variational motivation andegpriori estimate of the amount of this enhancement.

As to section 3, we observe that inequality 3.13 does have a physical meaning: taking
the originale as components of Heisenberg's quantum spins in a given space direction (say
direction 3),H (ry) is the entropy of the distribution of the components of the same spins in a
direction orthogonal to the previous one, say direction 1.

V(M) = 2—1/2 D sy p(0)Y?0), is, indeed, in a suitable representation of the Pauli spin
operatorsS(j) in which the S3(j)’s are diagonal, the scalar product of the wavefunction
V(o) = p(o)Y/? with the simultaneous eigenstagb;ch of the operators; () belonging to
the eigenvalue-1if j isin M, to the eigenvalue +1 if is not in M.

For systems in which the signals are written on quantum carriers (Feynman 1985,
Deutsch 1985), this dual model might be physically accessible, see Apeliaii(1989)
for a preliminary exploration (restricted to combinatorial optimization) of the computational
capabilities of a Heisenberg chain. We are working on the problem of extending such an
analysis to the learning problem.

Our final remark concerns the hardware implementability of the higher-order models
considered here: they do sacrifice some of the simplicity of the more conventional second-
order models (with only two-body interactions plus ‘hidden nodes’) to the important requisite
of existence and uniqueness @f for given p and A. We are exploring the possibility of
implementing higher-order models on the p-RAM architecture (Clarks@h1992).

The p-RAM architecture realizesn silicon exactly the higher-order models we are
interested in. The coordinates of the model which are actually accessible to updating (the
memory contents) define, however, a chart different fronyttedo-charts considered here.

In a previous paper (Apollorat al 1997) we have shown how to implement, in this new chart,
the covariant learning rule of Amagt al (1992, 1998), and have examined some entropic rules
for the optimization of the connection layout.
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