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Abstract. We examine some aspects of the interface area between mathematical statistics and
statistical physics relevant to the study of Boltzmann machines. The Boltzmann machine learning
algorithm is based on a variational principle (Gibbs’ lemma for relative entropy). This fact
suggests the possibility of a scheme of successive approximations: here we consider successive
approximations parametrized by the order of many-body interactions among individual units. We
prove bounds on the gain in relative entropy in the crucial step of adding, and estimating by Hebb’s
rule, a new parameter. We address the problem of providing, on the basis of local observations,
upper and lower bounds on the entropy. While upper bounds are easily obtained by subadditivity,
lower bounds involve localization of Hirschman bounds on a dual quantum system.

1. Introduction

We consider the Boltzmann machine model in a rather more general setting than in Ackley
et al (1985), allowing, as in Azencott (1992), for direct interaction between more than two
neurons. We establish, first of all, our notation. For fixed integerν, we set3ν = {1, 2, . . . , ν}.
Points in3ν will be called sites, or nodes, or neurons. Having setS = {−1, 1}, we indicate
an element ofSν by σ = (σ1, σ2, . . . σν), σi ∈ S, i = 1, 2, . . . , ν. A probability measure on
Sν is determined by a density functionρ: σ ∈ Sν → ρ(σ) satisfyingρ(σ) > 0,∀σ ∈ Sν and∑

σ∈Sν ρ(σ ) = 1.
We associate, with each subsetM of 3ν , a subset variableσM defined by

σM =
∏
i∈M

σi if M is nonempty, 1 otherwise.

Any probability densityρ onSν can be written in the form

ρ(σ) = 1

2ν
∑
M⊆3ν

sMσM

wheresM = Eρ(σM), andEρ(·) indicates expectation with respect to the probability density
ρ. The set{sM,M 6= ∅} of moments determines a coordinate system (thes-chart) on the
(2ν − 1)-dimensional manifoldPM(Sν) of all probability measures onSν . If we restrict our
attention to the setPM+(S

ν) of strictly positive probability measures onSν , we can also write

ρ(σ ) = exp(
∑

M⊆3ν,M 6=∅ θMσM)

Z(θ)
where Z(θ) =

∑
σ∈3ν

exp

( ∑
M⊆3ν,M 6=∅

θMσM

)
.

In the above sense, the collection of coupling constants{θM,M 6= ∅} equipsPM+(S
ν) with

another coordinate system (theθ -chart). The simple and deep relations between thes- and
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θ -charts have been reviewed and applied to problems in machine learning by Amariet al
(1992).

The conventional Boltzmann machine has only two-body couplings (θM = 0 for |M| > 2)
and must allow for hidden nodes in order to compensate for this limitation. We wish to explore
here the advantage of remaining in the exponential family of probability distributions by
allowing for many-body couplings, without hidden nodes.

The variational basis of the Boltzmann machine learning algorithm (Ackleyet al 1985)
is in the following elementary considerations. Letρ0 andρ1 be two elements ofPM+(S

ν);
Jensen’s inequality shows that

Eρ0(ln ρ0) > Eρ0(ln ρ1) with equality holding iff ρ0 = ρ1. (1.1)

Call θ(i), s(i) the coordinates ofρi(i = 0, 1) in the two charts considered above. It is trivial
to compute that, for each nonempty subsetM ⊆ 3ν , we have

∂Eρ0(ln ρ1)

∂θM(1)
= (sM(0)− sM(1)). (1.2)

Therefore, forε > 0, setting

1θM(1) = ε(sM(0)− sM(1)) (1.3)

we have ∑
M⊆3ν,M 6=∅

∂Eρ0(ln ρ1)

∂θM(1)
1θM(1) > 0. (1.4)

Inequality (1.4) says that a ‘small’ updating,θM(1) → θM(1) + 1θM(1), of the coupling
parameters ofρ1 produces a new probability measure which is closer toρ0 in the sense that
Eρ0(ln ρ1) gets closer to the upper bound that Jensen’s inequality sets for it.

The (higher-order) Boltzmann machine learning algorithm can now be described by the
following steps:

• with the current values of the machine parameters{θM(1)}, a simulator is allowed to run
according to a Glauber dynamics (Glauber 1963) havingρ1 as its stationary distribution;
this simulation is supposed to last long enough to allow the estimation, as ergodic means,
of some of the momentssM(1);
• these moments are compared with the corresponding momentssM(0) estimated from the

environmental signal consisting of a random sample drawn from the populationρ0;
• the parameters of the simulator are updated according to (1.3);
• the above procedure restarts with the new parameters.

Inequality (1.4) suggests that repeated execution of this cycle makesρ1 closer toρ0,
hopefully leading to a finalρ1 ‘indistinguishable’ fromρ0. In this sense the simulator will
have built a model of the environment.

This paper makes some preliminary steps towards an operationally meaningful assessment
of the performance of the above procedure. We observe, in this respect, that, in terms of the
relative entropy

I (ρ0, ρ1) = Eρ0(ln ρ0)− Eρ0(ln ρ1) =
∑
σ∈Sν

ρ0(σ ) ln
ρ0(σ )

ρ1(σ )
(1.5)

the inequalityEρ0(ln ρ0) > Eρ0(ln ρ1) amounts to a statement of Gibbs’ lemma:

I (ρ0, ρ1) > 0 equality holding iff ρ0 = ρ1. (1.6)

As it is, in general, out of the question to obtain identity between model and environment
(namelyI (ρ0, ρ1) = 0), the performance of the learning procedure will be measured by its
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capability of achieving a relative entropy below a preassigned positive thresholdImin. Such a
threshold will be determined, in each actual application, according to the standard techniques
of the theory of hypotheses testing: in particular, inequality 3.1 (page 75) of Kullback (1959)
shows the crucial role ofI (ρ0, ρ1) in relating the sample size to the errors of the first and
second kind in a test of the hypothesisρ0 versus the alternative hypothesisρ1.

In the above setting, the problem of finding a ‘good’ modelρ1 of the environmental
distributionρ0 becomes the problem of singling out a class of parametric models within which
an element can be found having, with reference toρ0, relative entropy smaller thanImin.
Reasons of computational feasibility make it obvious that such a parametric class must have
less than the maximum number 2ν−1 of parameters. Having fixed a subsetAof the set 23ν−{∅}
of all nonempty subsets of3ν , we consider those models for which the coupling constantsθM
vanish forM 6∈ A. An elementary explicit computation shows that, for a probability density
of the form:

ρA(σ ) =
exp

(∑
M∈A θMσM

)
Z(θ)

(1.7)

we have

I (ρ0, ρA) = H(ρA)−H(ρ0) +
∑
M∈A

θM(EρA(σM)− Eρ0(σM)) (1.8)

where{θM,M ∈ A} are thoseθ -coordinates ofρA which have not been set to zero, and
H(ρ) = −∑σ∈Sν ρ(σ ) ln ρ(σ) is the entropy ofρ ∈ PM+(S

ν).
The following considerations formalize the variational choice of the element of the given

class of models that ‘best approximates’ a givenρ0:

• For each choice of the set{sM(0) ≡ Eρ0(σM),M ∈ A} of ‘environmental moments’
associated to subsets inA, there exists a unique choice of coupling constants{θM,M ∈ A}
in (1.7) such that equation

EρA(σN) = sN(0) ∀N ∈ A (1.9)

is satisfied (lemma A 4.6 of Lanford 1973).
• For fixedρ0, we shall indicate byρA,0 the corresponding solution of the form (1.7) of

equation (1.9). We shall refer toρA,0 as to the ‘approximation of orderA’ to ρ0, or the
‘Boltzmann machine of orderA’ associated toρ0.
• It is easy to check, from (1.2), thatρA,0 minimizesI (ρ0, ρ) under the constraint that
θN = 0 for every nonemptyN not belonging toA.
• Equation (1.8) shows that

I (ρ0, ρA,0) = H(ρA,0)−H(ρ0). (1.10)

• It is easy to check, from (1.10), thatρA,0 maximizesH(ρ) under the constraint that
Eρ(σN) = Eρ0(σN), ∀N ∈ A.

Thus, how close the Boltzmann machine of orderA is, in relative entropy, to the
environmental distribution depends only on the environmental entropyH(ρ0) and on the
maximum entropy compatible with the given environmental expectations of subset variables
for subsets inA. It will be notationally convenient, from now on, to drop the suffix ‘0’ when
referring to the assigned environmental distribution (which we shall, therefore, simply indicate
by ρ) and to the associated Boltzmann machine of orderA (which will be indicated byρA).

As a final remark of this section, we observe that a training sampleσ(1), σ (2), . . . , σ (n)
of fixed size does not provide knowledge of the actual environmental lawρ(σ), but only of its
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empirical estimateρ∗(σ ; σ(1), σ (2), . . . , σ (n)), which is itself a random variable, function
of the sample. A detailed study of the random variableI (ρ∗, ρA) in its comparison with
I (ρ, ρA), leading under suitable hypotheses to the Akaike (1974) information criterion, can be
found in Murataet al (1995). In the following, we shall, however, neglect all considerations
of estimation errors in the numerical values of the parameters ofρA.

The paper is organized as follows. In section 2 we prove upper and lower bounds on the
relative entropy decrement achieved through the introduction of one more parameter in the
model. In section 3 we study ‘realistic’ entropy bounds, namely entropy inequalities in which
only quantities which are known at the current level of approximation appear. In particular we
specialize ‘quantum’ entropic inequalities to our models. Section 4 is devoted to discussion
and open problems.

2. Reconfiguration of a Boltzmann machine

Having fixed the environmental distributionρ, having fixed the orderA, it may occur that the
Boltzmann machine of orderA (which will be indicated byρA, its coordinates being indicated
by s(A) or θ(A)) fails to give a value below the thresholdImin set according to the criteria
discussed in the previous section. Such a situation opens the problem of choosing (at least) a
new subsetM 6∈ A and, on the basis of the value ofEρ(σM) estimated from the environmental
distribution, constructing the Boltzmann machine of orderB = A ∪ {M} (which will be, of
course, calledρB , its coordinates being indicated bys(B) or θ(B)).

This section is devoted to upper and lower bounds on the decrement of relative entropy
achieved through this crucial step of ‘adding one more parameter to the model’ (and through
its iterations). Equality (1.10) and the observation thatρA is the approximation of orderA to
ρB , make it clear that such a decrement is measured byI (ρB, ρA), and that

I (ρ, ρB) = I (ρ, ρA)− I (ρB, ρA). (2.1)

A lower bound onI (ρB, ρA) is easily obtained through the following steps.

• Relative entropy is monotonically increasing with respect to refinements of the partition
in sample space. In particular, for every eventC ⊆ Sν , we have (Kullback 1959):

PB(C) ln
PB(C)

PA(C)
+ PB(C̄) ln

PB(C̄)

PA(C̄)
6 I (ρB, ρA) (2.2)

where we have set

PA(C) =
∑
σ∈C

ρA(σ ) PB(C) =
∑
σ∈C

pB(σ ).

• Choose, in particular, forC the event ‘σM = 1’, whose indicator function isIC(σ ) = I+σM
2 ,

so thatPB(C) = 1+sM(B)
2 = 1+sM

2 , wheresM is the environmental expectation of the subset
variableσM , andPA(C) = 1+sM(A)

2 . (Notice that, in general, it will besM(A) 6= sM ,
becauseM 6∈ A).
• Use Schuetzenberger’s (1954) inequality, namely

p0 ln
p0

p1
+ q0 ln

q0

q1
> 2(p0 − p1)

2 for pi ∈ (0, 1), qi = 1− pi, (i = 0, 1)

(2.3)

to conclude that

I (ρB, ρA) >
(sM(A)− sM(B))2

2
(2.4)

(we remark that this inequality still holds if we exchangeA with B).
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In order to obtain an upper bound, we observe that the same reasoning as in (1.8) leads,
for every choice ofρ ′ andρ ′′ in PM+(S

ν), with, respectively, coordinatess ′, θ ′ ands ′′θ ′′, to
the identity

I (ρ ′, ρ ′′) + I (ρ ′′, ρ ′) =
∑
N⊆3ν

(θ ′N − θ ′′N)(s ′N − s ′′N) (2.5)

which specializes, in our case, to

I (ρB, ρA) + I (ρA, ρB) = θM(B)(sM − sM(A)). (2.6)

We can, therefore, conclude that

I (ρB, ρA) = θM(B)(sM − sM(A))− I (ρA, ρB)
6 θM(B)(sM − sM(A))− 1

2(sM − sM(A))2. (2.7)

Summarizing, forB = A ∪ {M}, we have

1

2
(sM − sM(A))2 6 I (ρB, ρA) 6 1

2
(sM − sM(A))2

(
2θM(B)

sM − sM(A) − 1

)
. (2.8)

We make the following comments.
(1) Inequality (2.8) is ‘epistemologically realistic’, in that it estimates the decrement in

relative entropy from below in terms of moments which can be estimated from an environmental
sample and of the moments predicted by the model at thecurrentorder of approximation, and
from above in terms of the same quantities and of the additional parameter of an attempted
subsequentlevel of approximation.

(2) Inequality (2.8) implies, in particular, that, forB = A ∪ {M} with M 6∈ A,
θM(B)

sM − sM(A) > 1. (2.9)

This inequality amounts to a quantitative assessment of Hebb’s (1949) rule in that it gives a
bound on the increment that one has to give to the coupling constant associated to the subsetM

in order to bring the ‘consensus’ of the neurons inM (probability thatsM = 1) from the value
1+sM(A)

2 predicted by the modelρA, to the value1+sM(B)
2 = 1+sM

2 exhibited by the environment.
(3) Inequality (2.9) can be extended, by iteration, to the general case that new coupling

constants are introduced for successively new subsetsM1,M2, . . . ,Mk. It is convenient, in
this case, to setB = A ∪ {M1,M2, . . . ,Mk}, Ai = Ai−1 ∪ {Mi} for 16 i 6 k, A0 = A. As

I (ρB, ρA) =
k∑
i=1

I (ρA, ρAi−1) (2.10)

one can conclude that

1

2

k∑
i=1

(sMi
(B)− sMi

(Ai−1))
2 6 I (ρB, ρA)

6 1

2

k∑
i=1

(sMi
(B)− sMi

(Ai−1))
2

(
2θMi

(Ai)

sMi
(B)− sMi

(Ai−1)
− 1

)
. (2.11)

(4) If somea priori upper boundI (ρ, ρA) 6 h on the relative entropyI (ρ, ρA) =
H(ρA)−H(ρ) is available, inequality (2.11) can give, along a nested sequence of successive
approximationsA = A0 ⊆ A1 ⊆, . . . ,⊆ Am ⊆ . . ., a criterion for stopping the
computationally expensive procedure of adding and estimating new parameters; knowingh,
such a criterion will be of the form:

stop at the levelm at which it is, for the first time,h− 1
2

m∑
i=1

(sMi
(B)− sMi

(Ai−1))
2 6 Imin.
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3. Entropy bounds

In order to be realistic, a stopping rule of the form outlined at the end of section 2 requires
that the upper boundh be of the formh = h({sN ;N ∈ A}), namely a function only of the
experimental data{sN ;N ∈ A} on the basis of which the approximationρA of orderA to the
environmentρ has been constructed. As, in turn, it isI (ρ, ρA) = H(ρA)−H(ρ), the above
goal is achieved (withh = h2 − h1) once ‘localized’ inequalities of the form

h1({Eρ(σN);N ∈ A}) 6 H(ρ) 6 h2({Eρ(σN);N ∈ A}) (3.1)

are established, for genericρ ∈ PM+(S
ν), and hence also forρA.

The task of obtaining anupper bound of the above form is conceptually simple, being
solved by the same idea underlying subadditivity ofH : neglect dependence among subsets in
A, and avoid overcounting of overlapping subsets.

For instance, in the caseA = {N ⊆ 3ν : 0 < |N | 6 k}, in which all interactions of up to
k neurons are considered in the model, Han’s inequality (Han 1978, Dembo and Cover 1991)
gives

H(ρ)

ν
6 1(

ν

k

) ∑
N⊆3ν,|N |=k

H(ρN)

k
(3.2)

whereρN(σ) ≡
∑

σi=±1,i /∈N ρ(σ) is the marginal distribution of the variables localized inN .
As ρN(σ) = 1

2|N |
∑

M⊆N sMσM , the right-hand side of (3.2) is, as needed, a function only of
{sN ;N ∈ A}. An additional bonus of Han’s inequality is that the r.h.s. is a monotonically
decreasing function ofk.

We concentrate, in the rest of this section, on the task of finding localizedlower bounds
onH(ρ). The idea thatH(ρ) fails to equal the upper boundν ln 2 by an amount which exactly
measures how farρ is from the centre of the simplexPM+(S

ν) (independent, identically
distributedσ , with P(σi = 1) = 1

2) can be made precise through the form that Gross’ (1975)
inequality takes in our context:

H(ρ) > ν ln 2−
ν∑
i=1

(
1−

∑
σ∈Sν

√
ρ(. . . σi = 1 . . .)ρ(. . . σi = −1 . . .)

)
. (3.3)

Shifting attention from individual sites to subsets requires us to follow the intuition that, if
ψ ≡ ρ1/2 is ‘spread’ on its domainSν , then its Fourier transform (namely the set of the
coefficients of its expansion in terms of characters of the group{−1, 1}ν), defined as

ψ̂(M) = 1

2ν/2
∑
σ∈Sν

ρ(σ )1/2σM (3.4)

is concentrated on a small region of its domain 23ν .
These considerations are made precise by the following discrete form of Hirschman’s

uncertainty principle (Hirschman 1957, Dembo and Cover 1991):

H(ρθ) +H(rθ ) > ν ln 2 (3.5)

where the suffixθ refers to the parameters in

ρθ =
(exp

∑
M⊆3ν ;M 6=∅ θMσM)

Z(θ)

and

H(rθ ) = −
∑
M⊆3ν

rθ (M) ln(rθ (M)) (3.6)



Higher-order Boltzmann machines and entropy bounds 5535

rθ (M) = (ψ̂θ (M))2 (3.7)

ψ̂θ (M) = 1

2ν/2
∑
σ∈Sν

ρθ (σ )
1/2σM. (3.8)

Our first aim is to rewrite (3.5) in a form in which, instead ofH(rθ ), a function of the moments
sM(θ) = Eρθ (σM) appears. We recall, first of all, that forβ > 0

d

dβ
H(ρβθ ) = −β

∑
M⊆3ν
N⊆3ν

θMcovρβθ (σM, σN)θN 6 0 (3.9)

so thatH(ρθ) > H(ρ2θ ).
We can, therefore, write

H(ρθ) +H(r2θ ) > H(ρ2θ ) +H(r2θ ) > ν ln 2. (3.10)

Now

ψ̂2θ (M) = 1

2ν/2
∑
σ∈Sν

ρ2θ (σ )
1/2σM = 1

2ν/2
∑
σ∈Sν

exp
∑

N⊆3ν,N 6=∅ θNσN
Z(2θ)1/2

σM

= 1

2ν/2
Z(θ)

Z(2θ)1/2
∑
σ∈Sν

ρθ (σ )σM = Cν(θ)sM(θ). (3.11)

The quantityCν(θ) (constant w.r.t.M) is easily computed from the observation that, because
of Parseval’s identity, it must be 1=∑M⊆3ν (ψ̂2θ (M))

2 = Cν(θ)2
∑

M⊆3ν sM(θ)
2.

It is, therefore,

r2θ (M) = sM(θ)
2∑

N⊆3ν sN(θ)
2

(3.12)

and we can conclude, dropping from now on the suffixesθ , that

H(ρ) > ν ln 2−H(r) (3.13)

with

r(M) ≡ s2
M∑

N⊆3ν s
2
N

(3.14)

H(r) = −
∑
M⊆3ν

r(M) ln(r(M)) (3.15)

wheresM = Eρ(σM) for M 6= ∅, s∅ ≡ 1.
Inequality (3.13) translates the problem of finding lower bounds of the formH(ρ) >

h1({Eρ(σN);N ∈ A}) into the problem of finding upper bounds of the formH(r) 6
h3({Eρ(σN);N ∈ A}).

This problem can be easily solved by looking at the functionr as a probability density on
the subsets of3ν : from the knowledge ofonly the moments{Eρ(σN);N ∈ A} one cannot,
of course, calculate the probabilities in (3.14) (the denominator and some of the numerators
in (3.14) being, in this case, unknown), but onecan compute the conditional densities with
respect to the eventA ∪ {∅}, defined by

r(M|A ∪ {∅}) = s2
M∑

N∈A∪∅ s
2
N

if M ∈ A orM = ∅, 0 otherwise.

H(r) can, therefore, be bounded from above by the supremum ofH(t) ast varies in the set of
all probability densities on 23ν which, under conditioning with respect to the eventA ∪ {∅},
give t (M|A ∪ {∅}) = r(M|A ∪ {∅}), ∀M ∈ 23ν .
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This supremum is, in fact, attained (as it is fairly intuitive to guess, and easy to prove by
conventional Lagrange multiplier methods) by a densityt∗ corresponding to a total probability
massα distributed among the elements ofA∪{∅} proportionally tor(·|A∪{∅}), and to a total
probability mass,β = 1− α, uniformly distributed on the remaining subsets of3ν .

The result is easily expressed in terms of the entropy

hA ≡ H(r(·|A ∪ {∅})) = −
∑

M⊆A∪{∅}
r(M|A ∪ {∅}) ln(r(M|A ∪ {∅}))

of the conditional density, a function only of{sM;M ∈ A}:
α = ehA

|Ā| − 1 + ehA
. (3.16)

This leads to the inequality

H(r) 6 H(t∗) = αhA + β ln |Ā| − α ln α − β ln β (3.17)

whereĀ is the complement ofA.
As a concluding remark, we wish to summarize the strategy outlined above, in order to

provide an intuitive understanding of the approach that we propose.
H(ρ) is theunknownentropy of the source that has generated the training sample. At

the current levelA of approximation, we suppose that the moments{sM;M ∈ A} have been
estimated with negligible sampling error, and that equation (1.9) has been solved with respect
to the coupling constants{θM;M ∈ A}. The issue is: isI (ρ, ρA) smaller than the threshold
Imin?

Imin is determined here by the requirement that a sample of the size that will be drawn
from the simulator in the actual application have a preassigned, large, probability of being
classified as coming from the environment. Han’s inequality sets an upper bound onH(ρA)

of the formH(ρA) 6 h2({sM;M ∈ A}) ≡ h2(A) whose right-hand side can be computed at
the current level of approximation. Hirschman’s inequality sets a lower bound onH(ρ) of the
form: H(ρ) > ν ln 2− αhA + β ln |Ā| − α ln α − β ln β ≡ h1(A) whose right-hand side can
also be computed at the current level of approximation.

The qualitative meaning of this inequality is the following: having explored a large enough
A and having found there many momentssM of absolute value ‘small’ with respect tos∅ ≡ 1,
so that the conditional probability densityr(M|A ∪ {∅}) is far from uniform and thereforehA
is ‘small’, one can draw the conclusion thatH(ρ) is ‘large’. As

I (ρ, ρA) = H(ρA)−H(ρ) 6 h2(A)− h1(A)

if h2(A) − h1(A) 6 Imin one can draw the conclusion that the required accuracy has been
attained with the current set of parameters.

If, on the contrary,h2(A)−h1(A) > Imin it may be necessary to enlargeA by a new subset
M1. Having estimatedsM1, inequality (2.4) says thatρA∪{M1} will be, in relative entropy, by at

least an amount
(sM1−sM1(A))

2

2 , closer thanρA to ρ.
Even before solving the method of moments equations

ρEρA∪{M1}(σN) = sN ∀N ∈ A ∪ {M1}
inequality (2.9) says thatθM1 will go from the value 0 it currently has inρA to a new value
θM1(A ∪M1) satisfying

θM1(A ∪M1)

sM1 − sM1(A)
> 1.

The initial point given by the parameters ofρA, supplemented bysM1− sM1(A) as initial guess
for θM1 suggests itself as natural in an iterative search of the solution of the method of moments
equations.
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4. Discussion and open problems

We observe that the parameter updating (by gradient descent) of a Boltzmann machine,
reviewed in the introduction, proceeds in a way strongly reminiscent of Hebb’s (1949)
neurophysiological postulate: ‘When an axon of cellA is near enough to excite a cellB and
repeatedly and persistently takes part in firing it, some growth process or metabolic change
takes place in one or both cells, such thatA’s efficiency as one of the cells firingB is enhanced’.
In this suggestive language, our considerations of section 2, in particular inequality (2.8), can
be read as a variational motivation and ana priori estimate of the amount of this enhancement.

As to section 3, we observe that inequality 3.13 does have a physical meaning: taking
the originalσ as components of Heisenberg’s quantum spins in a given space direction (say
direction 3),H(rθ ) is the entropy of the distribution of the components of the same spins in a
direction orthogonal to the previous one, say direction 1.

ψ̂(M) = 1
2ν/2

∑
σ∈Sν ρ(σ )

1/2σM is, indeed, in a suitable representation of the Pauli spin
operatorsS(j) in which theS3(j)’s are diagonal, the scalar product of the wavefunction
ψ(σ) = ρ(σ)1/2 with the simultaneous eigenstate12ν/2σM of the operatorsS1(j) belonging to
the eigenvalue−1 if j is inM, to the eigenvalue +1 ifj is not inM.

For systems in which the signals are written on quantum carriers (Feynman 1985,
Deutsch 1985), this dual model might be physically accessible, see Apolloniet al (1989)
for a preliminary exploration (restricted to combinatorial optimization) of the computational
capabilities of a Heisenberg chain. We are working on the problem of extending such an
analysis to the learning problem.

Our final remark concerns the hardware implementability of the higher-order models
considered here: they do sacrifice some of the simplicity of the more conventional second-
order models (with only two-body interactions plus ‘hidden nodes’) to the important requisite
of existence and uniqueness ofρA for given ρ andA. We are exploring the possibility of
implementing higher-order models on the p-RAM architecture (Clarksonet al 1992).

The p-RAM architecture realizeson silicon exactly the higher-order models we are
interested in. The coordinates of the model which are actually accessible to updating (the
memory contents) define, however, a chart different from thes- andθ -charts considered here.
In a previous paper (Apolloniet al 1997) we have shown how to implement, in this new chart,
the covariant learning rule of Amariet al (1992, 1998), and have examined some entropic rules
for the optimization of the connection layout.
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